
 1

AMG

Summary Version
1.0

Purpose of Benchmark

Test parallel performance of unstructured algebraic multigrid methods.

Characteristics of Benchmark

AMG is a parallel algebraic multigrid solver for linear systems arising from problems on

unstructured grids. The driver provided for this benchmark builds linear systems for a 3D

problem with a 27-point stencil and generates two different problems that are described in

section D of the AMG.readme file in the docs directory. The code is written in ISO standard

C.

There are very large demands on main memory bandwidth. Parallelization is accomplished using

MPI as well as OpenMP directives. The solve phase is fully threaded, the setup phase, which is

much more complicated and contains a large amount of integer arithmetic and branches, is

mostly threaded.

See a more detailed description of the code in the docs/AMG.readme file.

Mechanics of Building Benchmark

AMG uses a simple Makefile system for building the code. All compiler and

link options are set by modifying the Makefile.include file appropriately. For large

problems, systems with more than 2 billion unknowns, which is the case for the target problems,

it is necessary to use the option -DHYPRE_BIGINT.

To build the code, after having modified the Makefile.include file appropriately, type

make in the top level amg directory.

Other available targets are:

 make clean (deletes .o files)

 make veryclean (deletes .o files, libraries, and executables)

To configure the code to run with:

 2

1. MPI, add -DTIMER_USE_MPI to INCLUDE_CFLAGS line in the

Makefile.include file and use a valid MPI; for additional optimization
add -DHYPRE_CONCURRENT_PERSISTENT

2. MPI with OpenMP, add -DTIMER_USE_MPI –DHYPRE_USING_OPENMP to
INCLUDE_CFLAGS and add vendor dependent compilation and linking flag for OMP
(e.g. –fopenmp); for additional optimization add also
-DHYPRE_HOPSCOTCH

To be able to solve problems that are larger than 2³¹-1, add -DHYPRE_BIGINT

Mechanics of Running Benchmark

All runs described below are to be done using two problems, which are also described in

docs/amg.readme. The overall problem size is determined by the command line parameters

–n nx ny nz –P Px Py Pz , where nx, ny, nz define the size per MPI process and

Px, Py, Pz the process configuration. The two problems are using:

• -problem 1 (default) will use conjugate gradient preconditioned with AMG to
solve a linear system with a 3D 27-point stencil of size nx*ny*nz*Px*Py*Pz.

• -problem 2 simulates a time-dependent problem of size nx*ny*nz*Px*Py*Pz

with AMG-GMRES. The linear system is also a 3D 27-point stencil. The system is
sized to be 5-10% of the large problem.

Example command line parameters to vary the size of the problem (using SLURM notation. –n

indicates number of MPI tasks, -N is the number of nodes). To define the number of OpenMP

threads per MPI task use setenv OMP_NUM_THREADS .

1. Smaller problems:
srun –N 32 –n 512 amg –problem 1 \

–n 96 96 96 –P 8 8 8

srun –N 32 –n 512 amg –problem 2 \

–n 40 40 40 –P 8 8 8

srun –N 64 –n 1024 amg –problem 1 \

–n 96 96 96 –P 16 8 8

srun –N 64 –n 1024 amg –problem 2 \

–n 40 40 40 –P 16 8 8

 3

2. Medium-sized problems:

srun –N 512 –n 8192 amg –problem 1 \

–n 96 96 96 –P 32 16 16
srun –N 512 –n 8192 amg –problem 2 \

–n 40 40 40 –P 32 16 16

srun –N 1024 –n 16384 amg –problem 1 \

–n 96 96 96 –P 32 32 16

srun –N 1024 –n 16384 amg –problem 2 \

–n 40 40 40 –P 32 32 16

3. Problem (used for CORAL-2 baseline Figure of Merit calculation on BlueGene/Q),
Problem 1(default):
srun –N 24576 –n 393216 amg –n 96 96 96 –P 96 64 64

4. CORAL-2 class problem:
To create problems that are 4x the size as the problem above, choose
nx, ny, nz, Px, Py, Pz, so that nx*Px = 96*96 = 9216 and
ny*Py=nz*Pz = 96*128 = 12,288,

-n 96 96 96 –P 96 128 128 creates a problem four times as large by using
four times as many MPI processes, or
-n 96 192 192 –P 96 64 64 creates a problem four times as large by

quadrupling the size per process.

Figure of Merit (FOM):

There are 3 FOMs printed out at the end of each run of Problem 1:

1. FOM_Setup: nnz_AP / Setup Phase Time (Tier-2)
2. FOM_Solve: nnz_AP * Iterations / Solve Phase Time (Tier-1)
3. Figure of Merit (FOM_1)

`nnz_AP’ denotes the sum of the number of nonzeros of the system matrices and interpolation

operators on all levels in the algebraic multigrid preconditioner.

`Setup Phase Time’ is the wall clock time for the generation of the AMG preconditioner `Solve

Phase Time’ denotes the wall clock time for solving the problem using AMG-CG after AMG has

been set up. `Iterations’ denotes the number of iterations to achieve a solution that satisfies the

stopping criterion.

FOM_1 is generated as (FOM_Setup + 3*FOM_Solve)/4 .

Note that FOM_Solve is the FOM that needs to be reported.

 4

For Problem 2, which is a Tier-2 problem, the following FOM is printed out at the end of the

run:

Figure of Merit (FOM_2)

FOM_2 is generated by nnz_AP * (Iterations + time_steps) / Total Time.

Here ‘time_steps’ denotes the number of time steps, which is chosen to be 6.

‘Iterations’ is the cumulative number of iterations across all time steps. `Total Time’ is the wall

clock time for the whole run, including AMG setup in each time step, AMG-GMRES solve times

for all system solves (5 in each time step) and minor matrix manipulations; it does not include

the time to set up the original linear system.

Only Tier-1 FOMS, i.e. the Solve FOM for Problem 1, need to be reported. Note that it is

permitted to use command line option -keepT, which will store transpose matrices and use

matvec instead of a transposed matvec.

Benchmark Verification:

The benchmark delivers correct results if the ‘Final Relative Residual Norm’ printed out at the

end of each run is smaller than 1.e-08 for Problem 1 and smaller than 1.e-10 for Problem 2.

Figure-of-Merit Data on BG/Q

Below, FOM data obtained on Vulcan using 4 OpenMP threads per MPI task are reported, using

the following commands:
setenv OMP_NUM_THREADS 4

srun –N <nodes> –n <cores> amg –problem 1 –n 96 96 96 \

 –P <px> <py> <px>

srun –N <nodes> –n <cores> amg –problem 2 –n 40 40 40 \

 –P <px> <Py> <pz>

where px, py, pz are chosen as given for the smaller and medium-sized problems in
1., 2., and the CORAL-2 problem in 3.

For all runs mpixlc_r and the following compile options were used:
-O2 -DTIMER_USE_MPI -DHYPRE_USING_OPENMP -qsmp=omp \

-qmaxmem=-1 -DHYPRE_HOPSCOTCH \

-DHYPRE_USING_PERSISTENT_COMM -DHYPRE_BIGINT.

 5

The data printed in red are for the problem given in 3. above.

N n px py pz its FOM_setup FOM_solve FOM_1 FOM_2

32 512 8 8 8 24 8.944E+08 6.268E+09 4.925E+09 1.807E+08

64 1024 16 8 8 24 1.771E+09 1.252E+10 9.832E+09 3.592E+08

128 2048 16 16 8 25 3.492E+09 2.503E+10 1.965E+10 7.006E+08

256 4096 16 16 16 26 6.753E+09 5.001E+10 3.920E+10 1.357E+09

512 8192 32 16 16 27 1.336E+10 9.995E+10 7.830E+10 2.746E+09

1024 16384 32 32 16 28 2.595E+10 1.997E+11 1.562E+11 5.141E+09

2048 32768 32 32 32 30 4.874E+10 3.936E+11 3.074E+11 9.935E+09
4096

24576
65536

393216
64
96

32
64

32
64

30
36

9.786E+10
5.113e+11

7.906E+11
4.634e+12

6.174E+11
3.603e+12

2.035E+10
1.137e+11

